3DST: Questions and Issues

Mike Kordosky 4th DUNE ND workshop Fermilab, March 22-24, 2018

- From January meeting
 - What are the angular/energy resolutions of the 3DST for photons, muons and electrons?
 - How well can it do neutrino-electron elastic scattering?
 - How big does the 3DST target have to be to do reasonably well with Pi0 topologies and neutrons?
 - Can it do something with neutron counting/angles?
 - Does it have to be in the magnetic field?
 - What is the complementary physics relative to the other trackers that can be addressed with the 3DST?

- From January meeting
 - What are the angular/energy resolutions of the 3DST for photons, muons and electrons?
 - First results shown at the January meeting, updates since then.
 - Angular 10-20 mrad looks doable, with staggered cubes
 - How well can it do neutrino-electron elastic scattering?
 - How big does the 3DST target have to be to do reasonably well with Pi0 topologies and neutrons?
 - Can it do something with neutron counting/angles?
 - Does it have to be in the magnetic field?
 - What is the complementary physics relative to the other trackers that can be addressed with the 3DST?

- From January meeting
 - What are the angular/energy resolutions of the 3DST for photons, muons and electrons?
 - How well can it do neutrino-electron elastic scattering?
 - Needs an ECAL. No longer considered important?
 - How big does the 3DST target have to be to do reasonably well with Pi0 topologies and neutrons?
 - Can it do something with neutron counting/angles?
 - Does it have to be in the magnetic field?
 - What is the complementary physics relative to the other trackers that can be addressed with the 3DST?

- From January meeting
 - What are the angular/energy resolutions of the 3DST for photons, muons and electrons?
 - How well can it do neutrino-electron elastic scattering?
 - How big does the 3DST target have to be to do reasonably well with Pi0 topologies and neutrons?
 - Photons: ~ 9X₀ contains 95% of E in 90% of cases
 - Can it do something with neutron counting/angles?
 - Does it have to be in the magnetic field?
 - What is the complementary physics relative to the other trackers that can be addressed with the 3DST?

- From January meeting
 - What are the angular/energy resolutions of the 3DST for photons, muons and electrons?
 - How well can it do neutrino-electron elastic scattering?
 - How big does the 3DST target have to be to do reasonably well with Pi0 topologies and neutrons?
 - Can it do something with neutron counting/angles?
 - Yes, a la MINERvA. Can tag 100 MeV+ neutrons with decent efficiency.
 - Depends on size / geometry of course.
 - Does it have to be in the magnetic field?
 - What is the complementary physics relative to the other trackers that can be addressed with the 3DST?

- From January meeting
 - What are the angular/energy resolutions of the 3DST for photons, muons and electrons?
 - How well can it do neutrino-electron elastic scattering?
 - How big does the 3DST target have to be to do reasonably well with Pi0 topologies and neutrons?
 - Can it do something with neutron counting/angles?
 - Does it have to be in the magnetic field?
 - What is the complementary physics relative to the other trackers that can be addressed with the 3DST?
 - How does it fit in with the HPTPC or the STT?

Some new questions

- Is there a synergy between a side muon detector and 3DST?
- Is there a synergy between 3DST and the tracker's ECAL?
- Is there a synergy between the 3DST mission and on-axis monitoring?
- Is there a geometrical arrangement that works best with a cylindrical vessel?
- Is it redundant with the STT?
- What size is required to give "good" statistics & efficiency?
 - For physics studies
 - For on-axis monitoring
- Is it possible the 3DST would not be needed for the whole run?
 - Could it do its mission as a stand alone detector? In a B field?